## Common Hydraulic formulas

## Rules of Thumb

For every 1 HP of drive, the equivalent of 1 GPM @ 1500 psi can be produced.
To idle a pump when it is unloaded will require $5 \%$ of it's full rated HP.
Volume reduction of oil is approximately $1 / 2 \%$ for every 1000 psi of pressure.
Volume reduction of water is about $1 / 3 \%$ for every 1000 psi of pressure.
Flow velocity in hydraulic lines. Pump suction lines $2-4$ feet per second. Continuous duty pressure lines is $15-20$ feet per second. Intermittent duty pressure lines $20-30$ feet per second. Return lines 10-15 feet per second.
Heat removal in HP for hydraulic tanks. $1 / 3$ of operating HP. Example 30 HP electric motor you want to remove 10 HP worth of heat.
1 bar $=14.5 \mathrm{PSI}$

Force $=$ Pressure X Area

Torque and Horsepower Relations
Torque $=$ HP X $5252 /$ RPM
HP= Torque $\times$ RPM / 5252
RPM $=$ HP X 5252 / Torque

Hydraulic Horsepower (for use when calculating hp of motor for a pump)
Horsepower $=$ Pressure $\times$ Gallons Per Minute / 1714

Velocity of Oil flow in pipe
Velocity $=$ Gallons per Minute X . 3208 / Area

Circle Formulas
Area $=3.14 \times$ Radius (Squared)
Area $=3.14 \times$ Diameter $($ Squared $) / 4$
Circumference $=2 \times 3.14 \times$ Radius or $3.14 \times$ Diameter

Calculating gallons in a Tank
L X W X H (in inches) / 231=Gallons in tank

